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Abstract. When studying the influence of quenched defects on first-order structural phase
transitions, one has to take into account the elastic deformations which are induced by
heterogeneous nucleation of the new phase. In the present paper the influence of both ‘random
local transition temperature’ and ‘random local field’ defects are considered within a first-order
perturbation Landau theory. Both the order parameter (o.p.) fluctuations and the defects are
treated perturbatively, which is consistent for structural phase transitions close to a tricritical
point and for low enough defect concentrations. In such systems the o.p. fluctuations tend to
induce the first-order character of the transition, whereas both types of defect play the opposite
role and tend to decrease the jump of the o.p. at the transition. Estimates of the concentration
of defects which can lead to complete smearing of the transition are given.

1. Introduction

The problem of the influence of defects on first-order phase transitions is not only of
academic interest: defects can lead to a smearing of the phase transitions which has strong
practical repercussions. The influence of quenched defects on first-order phase transitions
has been discussed by Imry and Wortis [1] and the results of their paper have been repeatedly
used to interpret experimental data on some structural phase transitions (see, e.g., [2]).
However, for structural transitions in solids the applicability of the theory [1] is highly
questionable. Indeed, what was discussed in [1] is interplay between the volume and the
interface energy for a nucleus of the new phase, but the elastic energy associated with
the formation of the nucleus has been completely neglected. Such an approach is quite
reasonable for liquids or, maybe, for some magnetic transitions where the striction effects
are quite small, but it is not true for structural transitions. The importance of the elastic
effects at nucleation in solids has been known for a long time [3] and has been repeatedly
emphasized (see, e.g., [4, 5]). The main point is that the elastic energy associated with the
nucleation is proportional to the volume of the nucleating centre. That leads to a strong
suppression of the nucleation which has to be taken into account.

In this paper we shall take into account the above-mentioned elastic deformations.
We restrict ourselves to the case of small defect concentrations when defect contributions
are proportional to the concentration. We shall consider an elastically isotropic (but solid)
medium and one-component order parameter (o.p.) which has symmetry properties different
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from those of any component of the strain tensor. The latter means that the only possible
lower-order coupling of the o.p. and the strain is of the striction type (see (3)), which takes
place for any o.p.

For systems without defects it has been shown [6] that the fact that the o.p. fluctuations
occur in a solid, i.e. in a medium with a non-zero shear modulusµ, changes essentially
the character of the phase transition converting, in most cases, a second-order phase
transition into a first-order one. The effect is especially drastic for a tricritical point: the
phase transition becomes a first-order one for any number of components of the o.p., the
fluctuation-induced first-order transition occurs in a region where the criterion of smallness
of the critical fluctuations [7] is still fulfilled [8] and, for structural phase transitions, the
discontinuity of the order parameter at the transition is not very small compared with its
value atT = 0 [9]. We shall consider such phase transitions in this paper and study
how relatively small concentrations of the defects change the nature of the transitions. It
follows from the above remarks that it is reasonable and consistent to study the effects of
both the o.p. fluctuations and the defects within a perturbative approach using the Landau
(mean field) thermodynamic potential as a zero approximation. For second-order transitions
such an approach to study the effects of defects has been used already (see [10]–[12] and
references therein).

2. Random local transition temperature defects

In this section we shall study defects that do not break the symmetry of the symmetrical
phase, usually called ‘random local transition temperature’ (RLT) ones. Their presence can
be taken into account by assuming that the coefficients of the continuous-medium effective
Hamiltonian are space dependent (see, e.g., [10]–[12]). Below we shall restrict ourselves to
the space dependence of only one coefficient (that for which it is most important) and assume
as well that the defects are weak (see the condition below). This allows us not to take into
account the defect form factor but only its ‘strength’ [12]. We shall use the perturbation
theory to obtain the terms proportional to the defect concentration. Our consideration is
quite similar to that presented in [11] and [12] for second-order transitions. It has been
pointed out in [11] (p 87) that in the symmetrical phase the RLT defect induced and the
fluctuation induced anomalies are of the opposite sign (within the perturbation theory). For
first-order transitions it is reasonable to expect that the effect will be qualitatively the same:
a reduction of the effects of fluctuations due to the defects, i.e. a smearing of the first-order
transition. We shall show this explicitly.

The effective continuous-medium Hamiltonian that can be used as the starting point for
study of both the effects of defects and of the order parameter fluctuations has the form of
the Landau thermodynamic potential:

8(η, uik) =
∫

[ϕη(η)+ ϕu(η, u)] dv (1)

with

ϕη = 1
2Aη

2+ 1
4Bη

4+ 1
6Cη

6+ 1
2D(∇η)2+ 1

21A(r)η
2 (2)

and

ϕu(η, u) = rη23ujj + 1
2Ku

2
jj + µ(uik − 1

3ujj δik)
2 (3)

whereη is the order parameter,uik is the strain tensor and

1A(r) = A1N(r) = A1

∑
j

δ(r − rj ) (4)
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describes the contribution of the random temperature defects,N(r) is the defect density,rj
is the defect position andA1 is the defect strength.

The defect contribution can be found neglecting the fluctuations: it has been mentioned
above that in the problem in question they are never large. Thus one has to find the minimum
of the effective Hamiltonian (1) and to average over the defect distribution, but first it is
convenient to minimize over the elastic degrees of freedom making use of the fact that the
effective Hamiltonian (1) is quadratic in the strain components. In this minimization one
has to discriminate between spatially homogeneous and inhomogeneous strains:

uij (r) = u0
ij +

1

2

∑
k 6=0

[ikjui(k)+ ikiuj (k)] exp(ik · r) (5)

where u0
ij is the homogeneous strain andui(r) is the displacement vector. One has to

minimize with respect tou0
ij andui(r) separately [6]. As a result one obtains∫

ϕu(η, u)dV = − r
2

2K

(∑
k

ηkη−k

)2

− r2

2λ

∑
k 6=0

∑
k1k2

ηk1η−k1−kη−k2ηk2+k (6)

whereλ = K + 4µ/3 and the volume of the system is taken to be equal to unity. Let
us emphasize that it is the difference betweenλ andK that is responsible for the specific
features of the problem in solids.

In what follows we shall distinguish two parts in the free energy:80, which depends
on the zero Fourier component of the order parameter (η0), and81, which depends onη0

andηk. One has

80 = (Ã/2)η2
0 + 1

4B̃η
4
0 + 1

6Cη
6
0 (7)

where

Ã = A+NA1

B̃ = B − 2r2/K. (8)

N is the defect concentration. In81 one keeps only terms at most quadratic inηk:

81 = A1η0

∑
k 6=0

Nkη−k + 1

2

∑
k 6=0

(Ã+ 3B1η
2
0 + 5Cη4

0 +Dk2)ηkη−k (9)

where

B1 = B − 2
3r

2/K − 4
3r

2/λ = B̃ + 16
9 r

2µ/Kλ ≡ B̃ +1. (10)

The termNA1 in (8) describes the shift of the transition temperature due to the defects:
within the first-order perturbation theory this shift is naturally proportional to the defect
concentration.

It follows from (9) that the equilibrium value ofηk (ηke) is:

ηke = −A1Nkη0/(Ã+ 3B1η
2
0 + 5Cη4

0 +Dk2). (11)

The equilibrium value of81(η0) is

81(η0) = −1

2
A2

1η
2
0

∑
k 6=0

〈NkN−k〉
Ã+ 3B1η

2
0 + 5Cη4

0 +Dk2
(12)

where the angular brackets〈 〉 mean averaging over the defect positions. For randomly
distributed defects

〈NkN−k〉 = N (13)
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and one finds after integration overk

81(η0) = − 1
2(A

2
1Nkmax/2π

2D)η2
0 + (A2

1N/2πD
3/2)η2

0(Ã+ 3B1η
2
0 + 5Cη4

0)
1/2 (14)

wherekmax is the cutoff vector of the problem, which can be estimated to be of the same
order of magnitude as the reciprocal lattice vector. It is not important to know it accurately
because the first term in the rhs of (14) can be interpreted as a correction to the shift of the
transition temperature and can be neglected as long as the ‘strength’ of the defects is low
enough to ensure applicability of our treatment [11, 12].

Now let us consider the o.p. fluctuations. Within the first-order perturbation theory the
contributions of the defects and fluctuations are additive and one can use the results of [9]
where the fluctuation contribution has been calculated to obtain

8(η0) = 1

2
Ãη2

0 +
1

4
B̃η4

0 +
1

6
Cη6

0 +
A2

1N

2πD3/2
η2

0(Ã+ 3B1η
2
0 + 5Cη4

0)
1/2

− T

12πD3/2
(Ã+ 3B1η

2
0 + 5Cη4

0)
3/2 (15)

where it is assumed thatA,B, and B1 correspond to coefficients renormalized by
fluctuations.

Let us consider first the case of very small concentrations of defects, i.e. the phase
transition is almost the same as in the perfect crystal. Let us assume as well thatB1� B,
i.e. the phase transition is close to what would be a tricritical point if the effects of the
fluctuations and of the defects were negligible. It was shown in [9] that only the second
terms in the brackets appearing in the right-hand side of (15) are important close to the
first-order phase transition point. (15) can then be written, for this temperature interval, in
an approximate form:

8(η0) ≈ 1
2Ãη

2
0 + 1

4B̃η
4
0 + 1

6Cη
6
0 + [(3B1)

1/2/2πD3/2](A2
1N − B1T/2)|η0|3. (16)

One sees that the contributions of the defects and of the critical fluctuations to the coefficient
of the third-order term are of opposite signs, i.e. the random temperature defects reduce the
first-order character of the phase transition which is induced by the o.p. fluctuations, i.e.
they ‘smear’ the transition.

One can estimate the defect concentration necessary to suppress essentially the first-order
nature of the transition. As a dimensionless parameter characterizing the defect ‘strength’
it is natural to use [11, 12]ϕ = A1/Dd where d is the lattice spacing. The condition
ϕ � 1 is necessary for the applicability of the approach used, otherwise one has to take
into account not only the ‘strength’A1 but also the form factor of the defect [11]. The
order of magnitude of other relevant quantities can be found in a way that is conventional
for displacive transitions [13]. Assuming, e.g., thatη is dimensionless, andηat ≈ 1, one
obtains

D ≈ Tatd−1 B ≈ Tatd−3

where Tat is a typical ‘atomic temperature’ (Tat ≈ 104–105 K). Close to the tricritical
point, B ≈ 0 andB1 ≈ 1 ≈ (µ/K)(r2/λ), B1 is then expected to be of the order of
Bµ/K ≈ Tatd−3µ/K. One sees that the concentration in question can be estimated as

Ncd
3 ≈ (µ/K)(T0/Tat )/ϕ

2 (17)

whereT0 is the temperature of the transition.
One sees that for a ‘strongly displacive’ system (T0 � Tat ) and strong enough defects

(ϕ is not too small in spite of the fact that, in any case, it is much less than unity) one
would find thatNcd3 � 1, i.e. the phase transion becomes essentially smeared at defect
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concentrations which are much less than the ‘atomic’ one (d−3). Experimentally,T0/Tat
is usually about 10−2–10−3 and one sees that even forϕ ≈ 10−1, i.e. for fairly strong
defects, the concentration of defects producing complete smearing is not too far from the
atomic concentrations, but it is quite possible that it is still much less. In this case one of
the conditions of applicability of the perturbation theory to study the effects of defects is
fulfilled. Let us recall that another condition of applicability of the perturbation theory of
the effects of RLT defects is [11, 12]ϕ2Nd2rc � 1. Since for the pure crystal the first-order
transition occurs fairly far from the points of the loss of stability against inhomogeneous
fluctuations whererc = ∞, one can estimaterc, for displacive systems [13], asd (Tat/Tc)1/2.
One can see that the condition (17) does not contradict the condition of applicability of the
perturbation theory. Indeed,

ϕ2Ncd
2rc ≈ (µ/K)(T0/Tat )

1/2� 1. (18)

This means that the situation when the RLT defects diminish the jumps at the first-order
transition, say, twice is well described within the perturbation theory. However, one needs
another type of theory to describe the complete smearing of the first-order transition: when
the first-order transition occurs close to the points of the loss of stability the perturbation
theory both of the defect and of the fluctuation effects is no longer applicable.

3. Random local field defects

The above approach can be easily applied to a crystal with random local field (RLF) defects:
instead of the last term in the right-hand side of (2) one has to put−h(r)η (see [10]–[12])
with

h(r) =
∑
j

hj δ(r − rj ) (19)

wherehj = ±h0, h0 is a coefficient characterizing the ‘strength’ of the defect localized
at r = rj , and the sign ofhj is random. The defect contribution to the thermodynamic
potential is now

−1

2

∑
k

〈hkh−k〉
A+ 3B1η

2
0 + 5Cη4

0 +Dk2
. (20)

For randomly distributed defects

〈hkh−k〉 = Nh2
0 (21)

and the thermodynamic potential with both the RLF defects and the o.p. fluctuations taken
into account has the form

8(η0) = 1

2
Aη2

0 +
1

4
B̃η4

0 +
1

6
Cη6

0 +
Nh2

0

8πD3/2
(A+ 3B1η

2
0 + 5Cη4

0)
1/2

− T

12πD3/2
(A+ 3B1η

2
0 + 5Cη4

0)
3/2. (22)

The same reservations as those after (15) should be made and, in addition, a temperature-
andη0-independent term is omitted.

Under the same conditions as when writing (16) one obtains

8(η0) = 1
2Aη

2
0 + 1

4Bη
4
0 + 1

6Cη
6
0 + (Nh2

0/8πD
3/2)(3B1)

1/2|η0|
−(T /12πD3/2)(3B1)

3/2|η0|3. (23)

One sees again that the defect and the fluctuation term compensate each other to some
extent.
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Let us estimate now the defect concentration (Nc) which smears essentially the
fluctuation induced first-order transition. It has to be taken into account that the
dimensionless parameter describing the defect strength is [12]ψ = h0B

1/2/D3/2; this
parameter should be smaller than unity to make it possible to apply the perturbation
theory [12]. Puttingη0 equal to the o.p. jump at the transition which is of the order
of magnitude ofη0(T = 0) [9], i.e. can be estimated as [13] (T0/Tat ), and using the above
estimations of the coefficientB1, one finds

Ncd
3 ≈ (1/ψ2)(µ/K)(T0/Tat )

2. (24)

Comparing with (17) one sees that, at the same dimensionless ‘defect strength’, much smaller
concentrations of the RLF defects produce essential smearing of first-order transtions: the
right-hand side of (24) contains an additional small factor (T0/Tat ). This means that one
of the conditions of applicability of the perturbation theory remains fulfilled forN ≈ Nc:
Ncd

3� 1.
Let us recall that another condition of applicability of the perturbation theory of the

effects of RLF defects is [11, 12]ψ2Nr3
c � 1. Since for the pure crystal the first-order

transition occurs fairly far from the points of the loss of stability against inhomogeneous
fluctuations whererc = ∞, one can again estimaterc asd (Tat/Tc)1/2. One sees that the
condition (24) does not contradict the condition of applicability of the perturbation theory.
This means that the situation when the RLF defects diminish the jumps at the first-order
transition, say, twice is well described within the perturbation theory, as well as in the
above-discussed case of RLT defects. However, once more, one needs another type of
theory to describe the complete smearing of the first-order transition: when the first-order
transition occurs close to the points of the loss of stability the perturbation theory both of
the defect and of the fluctuation effects is no longer applicable.

4. Conclusions

Apart from the quite expected qualitative result that defects do smear first-order phase
transitions the final results of this paper are formulae (15) and (22) for the thermodynamic
potential depending on the Landau order parameter, which is, in fact, averaged over the
volume (the zero Fourier component,η0). These formulae differ from the classical (Landau)
ones due to the account taken of the defects as well as of o.p. fluctuations. Using these
formulae one can obtain the dependence on defect concentration of many characteristics of
first-order transitions (the latent heat, the jump of the o.p., etc) as well as of thermodynamic
quantities for the system close to the phase transition. We have considered a first-order
displacive structural transition in the region of what would be the mean field tricritical
point. In a pure crystal such a transition, due to the o.p. fluctuations, is a strongly first-
order one; the jump of the o.p. is of the order of magnitude of the order parameter at
T = 0. Nevertheless, strong enough random field defects were found essentially to smear
the transition even when their concentration is much less than the atomic one. Within our
approach we were able to consider the first stage of the smearing only: the decreasing of
the jumps of various thermodynamic quantities at the phase transition for relatively small
defect concentrations.

Let us emphasize once more the difference between our approach and that of Imry and
Wortis [1]. Imagine the system to be just at the temperature where the thermodynamic
potentials of the two phases are equal, i.e. at the thermodynamic phase transition point.
Imagine then that there are local fluctuations of the system parameters, specifically of phase
transition temperature, due to defects. How to estimate the possibility that the new phase
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will appear because of these fluctuations? The ‘textbook’ way is to compare the gain of the
bulk energy due to the local fluctuation of the phase transition temperature and the surface
energy due to the boundary between the phases. This type of reasoning used by Imry and
Wortis is quite correct for a liquid but inapplicable for a solid.

Let us assume, as in the present paper, that the phase transition is associated with a
change of mass density and not with a shear deformation. In a liquid, the change of density
at nucleation of the new phase does not lead to any consequences for the surrounding liquid
beyond the boundary layer, but this is not true for a solid where the surrounding phase
proves to be inhomogeneously deformed. The energy of this deformation is, of course,
positive and, which is most important, is proportional not to surface but to the volume of
the nucleus. This means that an infinitely large nucleus surrounded by the old phase will
have a positive energy even if its surface energy can be neglected and if the free system
with the parameters of the region inside the nucleus would prefer the new phase (if, of
course, the energy gain due to the transformation is not too large). In other words were
the nucleation to be possible only inside the old phase there would always be overheating
and overcooling at solid-state first-order phase transitions however slowly the temperature
changed. In the real life this is the case normally: the surface of the sample may play an
important role but that is another story.

A natural question arises as to whether the results of the present paper can be used
to interpret the experimental data [2] on the synchrotron radiation scattering in SrTiO3

instead of the results of [1] which are irrelevant to the problem as we hope to have shown.
In the experiment two temperature-dependent length scales have been revealed but in our
consideration there were not two length scales and thus we have to admit that our results do
not explain the experimental results [2] as well as, of course, the results of [1] but due to
another factor (see above). However we would like to mention that the occurrence of two
length scales is not surprisingper seif the crystal contains dislocations: it has been known
for a long time [11, 14] that near an edge dislocation the nucleation of the new phase takes
place and close to the second-order phase transition the radius of the nucleus is much larger
than the correlation length. In a more general form this idea has been put forward in [15].
The irrelevance of the theory of Imry and Wortis to the two-length-scale problem has been
emphasized as well in [16] from another point of view.
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[15] Altareli M, Nuñez-Regueiro M D and Papoular M 1995Phys. Rev. Lett.74 3840
[16] Cowley R A 1996Phys. Scr.T 66 24


